On Chvatal Rank and Cutting Planes Proofs
نویسندگان
چکیده
We study the Chvátal rank of polytopes as a complexity measure of unsatisfiable sets of clauses. Our first result establishes a connection between the Chvátal rank and the minimum refutation length in the cutting planes proof system. The result implies that length lower bounds for cutting planes, or even for tree-like cutting planes, imply rank lower bounds. We also show that the converse implication is false. Rank lower bounds don’t imply size lower bounds. In fact we give an example of a class of formulas that have high rank and small size. A corollary of the previous results is that cutting planes proofs cannot be balanced. We also introduce a general technique for deriving Chvátal rank lower bounds directly from the syntactical form of the inequalities. We apply this technique to show that the polytope of the Pigeonhole Principle requires logarithmic Chvátal rank. The bound is tight since we also prove a logarithmic upper bound.
منابع مشابه
Rank Bounds and Integrality Gaps for Cutting Planes Procedures Joshua
We present a new method for proving rank lower bounds for Cutting Planes (CP) and several procedures based on lifting due to Lovász and Schrijver (LS), when viewed as proof systems for unsatisfiability. We apply this method to obtain the following new results: First, we prove near-optimal rank bounds for Cutting Planes and LovászSchrijver proofs for several prominent unsatisfiable CNF examples,...
متن کاملA rank lower bound for cutting planes proofs of Ramsey Theorem
Ramsey Theorem is a cornerstone of combinatorics and logic. In its simplest formulation it says that there is a function r such that any simple graph with r(k, s) vertices contains either a clique of size k or an independent set of size s. We study the complexity of proving upper bounds for the number r(k, k). In particular we focus on the propositional proof system cutting planes; we prove tha...
متن کاملRank Bounds and Integrality Gaps for Cutting Planes Procedures
We present a new method for proving rank lower bounds for the cutting planes procedures of Gomory and Chvátal (GC) and Lovász and Schrijver (LS), when viewed as proof systems for unsatisfiability. We apply this method to obtain the following new results: First, we prove near-optimal rank bounds for GC and LS proofs for several prominent unsatisfiable CNF examples, including random kCNF formulas...
متن کاملSeveral notes on the power of Gomory-Chvatal cuts
We prove that the Cutting Plane proof system based on Gomory–Chvátal cuts polynomially simulates the lift-and-project system with integer coefficients written in unary. The restriction on the coefficients can be omitted when using Krajı́ček’s cut-free Gentzenstyle extension of both systems. We also prove that Tseitin tautologies have short proofs in this extension (of any of these systems and wi...
متن کاملThe Intersection of Knapsack Polyhedra and Extensions
This paper introduces a scheme of deriving strong cutting planes for a general integer programming problem. The scheme is related to Chvatal-Gomory cutting planes and important special cases such as odd hole and clique inequalities for the stable set polyhedron or families of inequalities for the knapsack polyhedron. We analyze how relations between covering and incomparability numbers associat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره شماره
صفحات -
تاریخ انتشار 2003